The homeotic protein Six3 is a coactivator of the nuclear receptor NOR-1 and a corepressor of the fusion protein EWS/NOR-1 in human extraskeletal myxoid chondrosarcomas.
نویسندگان
چکیده
Nuclear receptors represent a large family of transcription factors involved in development, differentiation, homeostasis, and cancer. In recent years, a growing number of cofactors has been discovered that participate in the regulation of the transcriptional activity of these proteins. We present in this study the identification of a cofactor, the homeotic protein Six3, which differentially regulates the transcriptional activity of the orphan nuclear receptor NOR-1 (NR4A3). NOR-1 is normally involved in the balance between cell proliferation and cell death, and is implicated in oncogenesis as part of the EWS/NOR-1 fusion protein found in human extraskeletal myxoid chondrosarcoma (EMC) tumors. Reverse transcription-PCR analyses indicate that EMC tumors expressing the EWS/NOR-1 mRNA also express mRNAs encoding NOR-1 and Six3. Glutathione S-transferase fusion protein assays show that Six3 binds in vitro the DNA-binding domain of NOR-1 and the EWS domain of EWS/NOR-1 and that the homeodomain of Six3 is required for these interactions. Mammalian two-hybrid experiments, using immortalized human chondrocytes as a model, indicate that Six3 also interacts with NOR-1 and EWS/NOR-1 in vivo. Cotransfection experiments show that Six3 stimulates the transcriptional activity of NOR-1, whereas it represses that of EWS/NOR-1. Considering the highly specific expression pattern of Six3, our finding that it is expressed in EMC suggests that it plays a pivotal role in the development of these tumors. We propose that Six3 maintains a transcriptional balance between the activities of NOR-1 and EWS/NOR-1, the net effect being to deregulate the expression of specific target genes and push the equilibrium toward uncontrolled cell proliferation.
منابع مشابه
Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma.
Extraskeletal myxoid chondrosarcomas (EMCs) are characterized by a recurrent t(9;22)(q22;q12) translocation, resulting in the fusion of the EWS gene in 22q12 and the TEC gene in 9q22. Here we report that a third member of the EWS, TLS/FUS gene family, TAF2N, can replace EWS as a fusion partner to TEC in EMC. Two tumors, one with a novel t(9;17)(q22;q11) variant translocation and one with an app...
متن کاملFusion of the NH2-terminal domain of the basic helix-loop-helix protein TCF12 to TEC in extraskeletal myxoid chondrosarcoma with translocation t(9;15)(q22;q21).
Extraskeletal myxoid chondrosarcomas (EMCs) are characterized by recurrent t(9;22) or t(9;17) translocations resulting in fusions of the NH2-terminal transactivation domains of EWS or TAF2N to the entire TEC protein. We report here an EMC with a novel translocation t(9; 15)(q22;q21) and a third type of TEC-containing fusion gene. The chimeric transcript encodes a protein in which the first 108 ...
متن کاملAlteration of large-scale chromatin structure by estrogen receptor.
The estrogen receptor (ER), a member of the nuclear hormone receptor superfamily important in human physiology and disease, recruits coactivators which modify local chromatin structure. Here we describe effects of ER on large-scale chromatin structure as visualized in live cells. We targeted ER to gene-amplified chromosome arms containing large numbers of lac operator sites either directly, thr...
متن کاملDesigning and Analyzing the Structure of DT-STXB Fusion Protein as an Anti-tumor Agent: An in Silico Approach
Background & Objective: A main contest in chemotherapy is to obtain regulator above the biodistribution of cytotoxic drugs. The utmost promising strategy comprises of drugs coupled with a tumor-targeting bearer that results in wide cytotoxic activity and particular delivery. The B-subunit of Shiga toxin (STxB) is nontoxic and possesses low immunogenicity that exactly binds to t...
متن کاملIntercellular Trafficking of VP22, a Herpes Simplex Virus Type 1 Tegument Protein
The herpes simplex virus type 1 (HSV-1) tegument protein, VP22 has been reported to have the property of intercellular transport. The previous studies have shown that following expression of a fusion protein containing VP22 it spreads to every cell in a monolayer and concentrates in the nucleus. In spite of these reports, some studies have shown that VP22 trafficking and its nucleus accumulatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 63 2 شماره
صفحات -
تاریخ انتشار 2003